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Figure 1. Overview and reconstruction results of the Occ-SDF hybrid neural scene representation. Aided with the feature rendering
scheme (Sec. 4) and the hybrid representation (Sec. 5), our method yields results with more detailed structures in room-level scenes
compared to the state-of-the-art, particularly for those low intensities and detailed structures.

Abstract

Implicit neural rendering, using signed distance function
(SDF) representation with geometric priors like depth or
surface normal, has made impressive strides in the surface
reconstruction of large-scale scenes. However, applying
this method to reconstruct a room-level scene from images
may miss structures in low-intensity areas and/or small, thin
objects. We have conducted experiments on three datasets
to identify limitations of the original color rendering loss
and priors-embedded SDF scene representation.

Our findings show that the color rendering loss creates
an optimization bias against low-intensity areas, resulting
in gradient vanishing and leaving these areas unoptimized.
To address this issue, we propose a feature-based color ren-
dering loss that utilizes non-zero feature values to bring
back optimization signals. Additionally, the SDF represen-
tation can be influenced by objects along a ray path, dis-
rupting the monotonic change of SDF values when a single

object is present. Accordingly, we explore using the occu-
pancy representation, which encodes each point separately
and is unaffected by objects along a querying ray. Our ex-
perimental results demonstrate that the joint forces of the
feature-based rendering loss and Occ-SDF hybrid repre-
sentation scheme can provide high-quality reconstruction
results, especially in challenging room-level scenarios. The
code is available at https://github.com/shawLyu/Occ-SDF-
Hybrid

1. Introduction
Reconstructing a 3D scene from a series of multi-view

images is a crucial problem in the realm of computer vi-
sion. This process has widespread applications in various
fields such as animation, gaming, and virtual/augmented re-
ality (VR/AR). The recent trend is to represent a 3D scene
as an implicit function parameterized by a neural network
[13, 19, 26, 21], whose optimization is supervised by ex-
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plicit 3D data like point cloud or real SDF value. Recent
advancements in neural radiance field (NeRF) [14] further
enable learning an implicit 3D representation from purely
sparse posed images [35, 15].

However, when it comes to producing high-quality
novel-view synthesis, these methods frequently utilize vol-
ume density [14] to represent the 3D geometry. Unfor-
tunately, this approach does not adequately constrain the
3D geometry in the presence of ambiguities [18], ulti-
mately leading to poor surface reconstructions (as depicted
in Fig. 1: Volume Density).

Accordingly, research efforts have been made to exploit
geometry-friendly representations, including signed dis-
tance function (SDF) [32, 34, 19] or occupancy [18], whose
zero-level set can be extracted to become the concerned 3D
surface. Albeit improving quality, they consider the recon-
struction only of a single object, thereby, the performance
degrades dramatically when applied to scene-level surface
reconstruction, i.e., representing a room (Fig. 1: SDF). An
attribute is that reconstructing texture-less areas often suf-
fers from ambiguous visual cues with only RGB loss as
the regularization. To address this problem, recent research
has attempted to incorporate semantic [8] or geometric pri-
ors (depth/normal [36, 31] constraints) to further regularize
scene-level reconstruction. With SDF-based representation
and geometric priors [36], the reconstruction quality has
been greatly improved (Fig. 1: SDF + Geometry Priors), es-
pecially concerning large flat areas and objects. However, it
still cannot faithfully reconstruct the 3D scene with missing
structures in low-intensity dark areas and small/thin objects
(Fig. 1: SDF + Geometry Priors).

The above observation motivates us to dive into bridg-
ing the remaining missing blocks of existing neural surface
representation methods. Notably, we focus on the SDF-
based representation as it achieves state-of-the-art perfor-
mance and has been widely adopted. Our analysis suggests
that both the RGB color rendering formulation and SDF
representation have clear limitations preventing existing so-
lutions from fully unleashing the potential of implicit neural
surface representation for large-scale room-level scenes.

First, the color itself can show a significant impact on
the optimization of geometric representation relying on the
original RGB-based rendering formula [14], namely color
bias. In particular, dark pixels with small intensity values
will make the partial derivation of the loss with respect to
the corresponding SDF value become zero, corrupting the
optimization and resulting in missing structures in dark ar-
eas (see for example in Fig. 1: Low Intensities). Accord-
ingly, herein instead of directly calculating the weighted
color, we first compute weighted features and then use a
learnable multi-layer perceptron (MLP) to decode the final
rendering color. In such a way, we would still be able to
effectively optimize the corresponding geometry represen-

tation as long as the feature vector contains non-zero values.
Second, the vanilla SDF-based neural rendering only

considers a single ray directly passing through the object
surface from the empty space and ignores objects along the
ray [32, 34]. This configuration violates scene-level geom-
etry where the existence of multiple objects clearly affects
the distributions of SDF (Fig. 5(a)). Meanwhile, the op-
timization of thin structures and small objects, which nat-
urally has small sampling probability, will be greatly de-
graded by this violation even with correct geometry prior
and the structure will be erased to minimize the global ge-
ometry loss (Fig. 1: Detailed Structures).

In addition, although occupancy-based representations
are likely to generate unwanted structure and cannot war-
rant a smooth surface reconstruction (Fig. 1), they are often
sufficiently robust to objects along the ray and free from
object interference in scene-level data. Therefore, during
optimization, we propose to describe the room-level scene
using occupancy in conjunction with signed distance func-
tions (SDFs) to compensate for each other’s defects.

The technical contributions are as follows:

• We explore an improved feature rendering scheme to
overcome the problem of vanishing gradients in neu-
ral implicit reconstruction brought by the vanilla color
space rendering formula.

• We carefully investigate insights and limitations in ex-
isting SDF and occupancy representations, and accord-
ingly propose a hybrid representation mingling SDF
with occupancy, dubbed Occ-SDF Hybrid, to resolve
surfaces with thin structures and small objects.

• We conduct a large body of qualitative and quantitative
experiments against state-of-the-art, indicating that our
Occ-SDF hybrid formula can yield a higher-fidelity
room-level scene representation, particularly with suc-
cessfully resolving small and dark objects.

2. Related Work
Multi-view Stereo Conventional algorithms [1, 25, 4] al-
ways split the reconstruction into two steps. First, the
feature-matching method [22, 17, 24] is applied to esti-
mate the depth of each frame. Then, the resulting depth
maps [12] are used to reconstruct the final scene. Notably,
the reconstruction may suffer from poor performance in
texture-less areas. Learning-based approaches are mainly
divided into two categories. Typically, neural networks are
embedded into the traditional reconstruction pipeline to re-
place specific modules, like feature matching [23, 37, 30],
depth estimation [33], or depth fusion [5]. These methods
often suffer from depth inconsistency problems due to the
separately estimated depth maps. Alternatively, neural net-
works are designed to directly regress input images to trun-



cated signed distance functions (TSDFs) [16, 28], but the
reconstruction results often lack enough fine details.

Neural Scene Representation Recently, coordinate-based
neural representations can faithfully model a 3D scene with
only posed images. Approaches with an implicit differen-
tiable renderer [35] only use volume density as scene rep-
resentation which can not extract 3D scenes directly. To
address this issue, occupancy-based representation [18] and
SDF-based representation [32, 34] are proposed to facilitate
3D reconstruction. Notably, these methods already achieve
great performance for object-level scenes but exhibit poorly
for room-level scenes, especially in texture-less areas. For
the room-level scenes, several existing approaches [9, 39]
have demonstrated the ability to employ learned shape pri-
ors derived from extensive data to reconstruct scenes from
incomplete or noisy point clouds. However, these meth-
ods face limitations when it comes to reconstructing scenes
solely from image data.

Priors for Indoor Scene Reconstruction Existing methods
have attempted to introduce priors to resolve higher-fidelity
surfaces in texture-less areas. Manhattan-SDF [8] follows
semantic-NeRF[38] to estimate the volume density and se-
mantic label at the same time, and then uses Manhattan-
World assumption to regularize the geometry in floor and
wall regions. NeuRIS [31] and MonoSDF [36] directly ex-
ploit the depth and normal predicted from an off-the-shelf
neural network to regularize the geometry of each point, but
in many cases, thin structures would disappear. NeuRIS
[31] proposes a dynamic scheme to eliminate the wrong su-
pervision signal from inaccurate estimated results, however,
based on our investigation that fine structures are still lost
even with the correct geometry for supervision. In all, we
seek to explore a feature rendering scheme and a hybrid rep-
resentation to overcome the above problems.

3. Overview and Preliminary

Our goal is to examine the limitations of existing im-
plicit neural surface representations and explore practical
solutions for accurately reconstructing large-scale, room-
level 3D geometry with fine details from a set of cali-
brated images. First, we find that the well-adopted color-
based rendering formula in [36, 31] will induce optimiza-
tion bias against low-intensity areas, leaving these areas
under-optimized and resulting in missing reconstructions
(Sec. 4.1). Accordingly, we propose a simple yet effec-
tive feature-based rendering formula to address the prob-
lem (Sec. 4.2). Second, our analysis shows that the SDF-
based neural surface representation violates scene-level ge-
ometry supervised signal and thus prevents the model from
obtaining accurate reconstructions, making the model tends
to sacrifice small and thin structures (Sec. 5.2). Motivated
by this, we propose a hybrid representation mingling occu-
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Figure 2. Network architecture. The geometry network takes 3D
position (x, y, z) after positional encoding(PE) as input and output
both SDF and occupancy value. The appearance network takes
view direction (θ, ϕ) as input and outputs two types of color, the
direct color is used in Eq. (4) to directly obtain the pixel color and
the decoded color is calculated via the rendering formula (Eq. (8)).

pancy and SDF for accurate reconstruction (Sec. 5.3).
We here describe the mathematical preliminary on the

state-of-the-art surface representation, namely SDF-based
Neural Scene Representation [34], for 3D reconstruction.

For implicit neural reconstruction, we can represent the
scene as a signed distance function (SDF) field, which is a
continuous function f that calculates the distance between
each point and its closest surface

1Ω(p) =

{
1 if p ∈ Ω
0 if p /∈ Ω

,

f(p) = (−1)1Ω(p) min
y∈M

∥p− y∥ ,
(1)

where 1Ω(p) is an indicator function to represent whether
the space at position p is occupied, M = ∂Ω is the bound-
ary surface of occupied space and || · || is the standard Eu-
clidean 2-norm. Following the VolSDF [34], we use an
MLP to represent the function f and convert the SDF value
to Laplace density with the following function

σi(pi) = αΨβ (−f(pi)) , (2)

where α, β > 0 are learnable parameters, and Ψβ is the
cumulative distribution function (CDF) with zero mean and
the β scale is defined as

Ψβ(s) =


1
2 exp

(
s
β

)
, if s ≤ 0

1− 1
2 exp

(
− s

β

)
, if s > 0

. (3)

Color Rendering Formula According to the rendering for-
mula [14], the color for the current ray r is rendered by

Ĉ(r) =

M∑
i=1

T r
i αiĉ

r
i , (4)

where T r
i and αi represent the transmittance and alpha



value (a.k.a opacity), respectively, of sampled point. And
M represent the number of the sampled point along the ray
r. They can be computed by

T r
i =

i−1∏
j=1

(1− αi), αi = 1− exp(−σr
i δ

r
i ) , (5)

where δir is the distance between adjacent sample points.
Finally, given the rendered color Ĉ(r), the SDF field will
be optimized from sparsely sampled images by minimizing
the color-based rendering loss as

Lrgb =
∑
r∈R

||Ĉ(r)− C(r)||1 , (6)

where C(r) is the ground-truth color associated with the
sampled ray r.

4. Feature Rendering Formula

4.1. Problem of Color-based Rendering

Given the SDF-based scene representation and the color-
based rendering loss Lrgb in Sec. 3, we analyze the deriva-
tive of Lrgb to the opacity αi of a point pi. Note that for a
single point pi, as αr

i are the same regardless of the rays, we
thus omit its dependency on ray r and use αi for simplicity.
For a point pi, the derivative of the color loss function to its
opacity αi is

∂Lrgb

∂αi
=±

i−1∏
j=1

(1− αj)ci −
N∑

k=i+1

ckαk

k−1∏
j=1,j ̸=i

(1− αj)

, (7)

which indicates that when we optimize the SDF value of pi,
the gradient is determined by the color of the current point
pi and points behind it (ck and k ∈ {i + 1, ..., N}), and
opacity of all points on the entire ray except for the current
point (αj and j ∈ {1, 2, ...N} & j ̸= i). Notably, when
processing a dark region, saying that the ci approaches zero,
the first term of Eq. (7) will be close to zero. Similarly,
if points behind pi have low opacity (αk and k ∈ {i +
1, ..., N}), the gradient with respect to the SDF value will
be small, causing the vanishing problem in dark regions.
More generally, the gradient of SDF values can be affected
by the color itself, resulting in a biased optimization process
that tends to favor high color intensities.

The above analysis is also supported by our experiments
below. As shown in Fig. 3, we sample rays in the dark
regions and the light regions separately and accordingly
record the trend of gradient norms in these two regions dur-
ing the optimization. In the beginning, the gradient norms
from these two regions are similar; and the gradient norm
in the dark region (red solid line) decreases as the number
of training epochs increases, while the gradient norm in the
light region remains stable (blue solid line), indicating the
dark areas contribute much less to the optimization process.
As the optimization process proceeds, if these points are
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Figure 3. The trend for the gradient. The mean and variance
of gradient norm (shadowed curves for variance) corresponding to
light and dark regions during optimization.

predicted as dark colors (cri → 0), it would lead to the gra-
dient reduction effects as analyzed in Eq. (7). The shadowed
regions keep the same trend as the mean values, further af-
firming our earlier analysis. Note that the gradient of points
in these areas will not equal zero due to the influence of
other loss functions, like depth consistency loss.

4.2. Feature-based Rendering

To resolve the aforementioned problem, we propose
feature-based color rendering loss. As shown in Fig. 2, the
Appearance network outputs two predictions for each point
i along a ray r: one is the color vector ĉri , and the other is the
hidden feature F r

i . For direct color ĉri , we utilize Eq. (4) to
obtain the target pixel color Ĉc(r). And the hidden feature
F i
r is used to render the ray feature F̂ (r) by

F̂ (r) =

M∑
i=1

T r
i αiF

r
i . (8)

The ray feature F̂r is further decoded by a decoder D to
yield the decoded target pixel color,

ĈF (r) = D(F̂ (r)) , (9)

where the decoder D is a single-layer perceptron with 256
nodes. Finally, the decoded color ĈF (r) from the rendered
feature is used to construct the feature-based color render-
ing loss. As such, the optimization of these dark regions
would not be affected by the color itself. As long as there
are non-zero values in the rendered feature, there will be
non-zero gradients with respect to the volume density of
the concerned point. As shown in Fig. 3 (dashed lines), the
gradient norm is not influenced by the intensity of colors.

5. Hybrid Representation Scheme

5.1. Incorporating Geometry Prior Matters

It is clear that for room-level scene reconstruction, ge-
ometry priors are essential. Existing methods [31, 36] ren-
der depth D̂(r) and normal N̂(r) of the surface intersecting



the current ray as

D̂(r) =

M∑
i=1

T r
i α

r
i t

r
i and N̂(r) =

M∑
i=1

T r
i α

r
i n̂

r
i , (10)

where T̂ i
r and α̂i

r have the same meaning as Eq. (4), tri is the
distance the ray passing and nr

i is the normal of point pi.
Next, these methods use depth and normal maps estimated
from pre-trained models, such as Omnidata [10], to directly
supervise the rendered depth D̂(r) and normal N̂(r) using
Eq. (11) and Eq. (12), respectively. Overall, the depth loss
function is defined as

Ldepth =
∑
r∈R

||(wD̂(r) + q)− D̄(r)||2 , (11)

where w and q are the scale and shift computed by the
least-squares method [6] to solve scale-ambiguity problem
for monocular depth prediction methods. And the normal
loss function is
Lnormal=

∑
r∈R

||N̂(r)− N̄(r)||1+||1− N̂(r)T N̄(r)||1 , (12)

where N̄(r) is the predicted monocular normal transformed
to the same coordinate system with angular.

As shown in Fig. 1, we note that these geometry pri-
ors benefit the reconstruction of better surfaces in texture-
less and sparse-viewed areas. However, thin structures and
small objects, such as the yellow flower in Fig. 4, cannot
be faithfully reconstructed with geometry priors. Recently,
NeuRIS [31] put forward a hypothesis that this phenomenon
arises from the inaccurate geometry supervisory signal (i.e.
depth and surface normal). However, according to our ex-
periment on Replica synthetic dataset, this problem still ex-
ists even though we use the perfect ground-truth depth, nor-
mal, and RGB to provide supervisory signals (see Fig. 4).

5.2. Problem of SDF Formula with Geometry Prior

To dive into the SDF representation and explore its limi-
tations for surface reconstruction with geometric priors, we
create a simplified scenario and simulate object occlusions
as shown in Fig. 5(a). The ground-truth SDF intersecting
with a horizontal plane is shown in Fig. 5(a), and the SDF
distribution along a ray r intersecting with the blue cube at
point ps is shown in Fig. 5(c). There are many local minima
and maxima due to the existence of multiple objects, which
differs from the single-object scenario following a mono-
tonic function (blue line in Fig. 5(c)). To examine depth
priors for surface reconstruction, we employ the approach
proposed in MonoSDF [36] to calculate the depth of ps fol-
lowing Eq. (10) subject to the ground-truth SDF.

However, even with the ground-truth SDF, the estimated
depth value (1.59, the red vertical plot in Fig. 5(e)) still de-
viates from the true depth value (2.94, the green vertical
plot in Fig. 5(e)) when multiple objects exist. According
to Eq. (10), the estimated normal value would suffer from

Pseudo Ground Truth MonoSDF Error

Figure 4. Illustration of failure cases of state-of-the-arts. Even
though applying the perfect pseudo ground-truth geometry to su-
pervise the model, existing room-level reconstruction methods
like [36] can still fail to resolve accurate 3D structures.

the same problem. This implies that existing methods in-
corporating geometry priors [36, 31] to guide the learning
of the SDF representation may not necessarily encourage
the model to learn the true SDF for scene-level surface re-
construction. In turn, because small objects or thin struc-
tures usually have low sampling probability during training,
the minimization of Ldepth will encourage the model to pre-
dict SDF ignoring small objects along the ray r such that
the estimated SDF will produce depth values closer to the
depth supervision (see Fig. 5(e)) and minimize the overall
loss function, attempting to mimic the single object scenario
(right part in Fig. 5). In sum, the supervision from geomet-
ric priors tends to sacrifice the reconstruction of small ob-
jects to preserve large surface reconstruction, which aligns
also with our observation presented in Fig. 4.

5.3. Hybrid Occupancy-SDF Representation

The problem above is essentially caused by the SDF rep-
resentation, which describes the geometry of a scene as a
whole and thus suffers from the interference of other ob-
jects, especially small objects, and thin structures are prone
to be removed to preserve large structures.

Unlike the SDF representation, occupancy represents
each point separately and thus is free from the interference
of objects in this challenging scenario. However, occupancy
representation only focuses on the intersecting point ignor-
ing the constraint of neighborhood points. Thus, the recon-
struction results represented by occupancy will have many
floaters and useless structures, as shown in Fig. 1, which can
be eliminated in SDF by Eikonal loss [7]. This inspires us
to investigate a hybrid of occupancy and SDF as a represen-
tation for neural surface reconstruction as shown in Fig. 2.
The geometry network θ outputs both SDF and occupancy.

Specifically, the occupancy represents surfaces as the de-
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Figure 5. Toy experiments for the room-level scene. The left part of 5(a), where we stand in front of the yellow cylinder to observe the
entire scene, is a widespread scenario for room-level scale scenes. Unlike the single object scenario, where the distribution of SDF value
is a monotonic decreasing function from the observed position to the object, the room-level scenario has complex distributions with multi
peaks/valleys along the single ray (5(c)). Following the Laplace density function [34], the density distributions of different situations are
shown in 5(d), where room-level scenes have a secondary peak near small objects but the single object scene only has one peak. It is
because of the existence of this peak, the weights in the room-level scene (5(e)) exhibit a multi-model distribution, while for the single
object case a uni-modal distribution. As such, we note that the rendering depth D̂ deviates from the ground truth in the room-level scene
but is close to the ground truth depth object-level scene. 5(b) means the effect of supervised signal in three different representations.

cision boundary of a binary occupancy classifier, parameter-
ized by a neural network θ

oθ(p) : R3 → [0, 1] , (13)

where p is a 3D point. The occupancy representation as-
sumes that objects are solid, thus we can rewrite the neural
rendering formula [14] to

Ĉ(r) =

M∑
i=1

o(pi)
∏
j<i

(1− o(xj))c(pi, d) , (14)

which replaces the opacity α to a discrete occupancy indi-
cator variable o ∈ 0, 1, where o = 0 indicates the free space
while o = 1 the occupied space. Thus, this representation
will not be affected by the objects along the ray, and the
rendering depth will be consistent with ground-truth depth
in ground-truth occupancy space. Note that the occupancy-
based representation is introduced to facilitate optimization.
During inference, the SDF is used for reconstruction.

To understand why and how the hybrid representation
helps optimize the SDF field for accurate reconstruction,
we conduct the following empirical analysis, using the sce-
nario shown in Fig. 5(a). Here, the orange ray hits a surface
point Q of the large blue cube and the blue ray hits the sur-
face point P on the small cylinder. During optimization, the
depth/normal loss for point Q along the orange ray will en-
courage the model to predict a large SDF value (absolute)
of point P (Fig. 5(b)) which violates the reconstruction of
the small cylinder where a small SDF value is desired. In

contrast, point Q has no effects on point P with occupancy
representation. The hybrid representation joins the forces
of SDF and occupancy representations, aiming to use oc-
cupancy representation to help overcome the issues of SDF
representation in optimization. Although the depth/normal
loss from the SDF presentation for point Q still has a nega-
tive impact on the optimization of point P . The additional
occupancy representation will force the network to predict
a large occupancy value for a point P and thus will indi-
rectly regularize the network to predict a small SDF value
(see Fig. 5(b): the blue up arrow in “Hybrid”). We admit
that this hybrid representation can only alleviate this prob-
lem, and our study is more empirical. Fundamental issues
arise from insufficient neural scene representation, which
requires further research efforts. We explore further why
this combination would bring notable benefits to the sup-
plementary with an example.

6. Experiments

Optimization. In the training stage, we minimize the loss

L =Lsdf
rgb + λ1LsdfF

rgb + λ2Leik + λ3Locc
depth

+ λ4Lsdf
depth + λ5Locc

normal + λ6Lsdf
normal,

(15)

where Lrgb means color-based rendering loss following
Eq. (6) but only to SDF representation. The rendering
color computed by the feature rendering formula (Eq. (8)



and Eq. (9)) is denoted to LsdfF
rgb . Notably, Leik means the

eikonal loss [7], Ldepth means the depth rendering loss fol-
lowing Eq. (11), and Lnormal means the normal rendering
loss following Eq. (12). We apply them for both represen-
tations, where the superscript occ indicates the loss com-
puted by occupancy-based representation, while the sdf by
SDF-based representation. The network is optimized by
the Adam optimizer with a learning rate of 5e−4. We set
weights λ1, λ2, λ3, λ4, λ5, λ6 to 1, 0.05, 0.5, 0.1, 0.1, 0.05,
respectively. The network architecture and sampling strat-
egy are detailed in the supplement.

Datasets. We use three datasets to assess the performance
of our algorithm. ScanNet [2] is a real-world dataset that
provides 1,513 scenes captured with Kinect V1 RGB-D
camera. The BundleFusion [3] is applied to provide high-
quality camera poses and surface reconstructions. For each
scene, we uniformly sample roughly 500 frames to train our
network. Tanks and Temples [11] is a real-world, large-
scale scene dataset. We use four indoor scenes from their
advanced split and run on the official server. Replica [27]
is a synthetic dataset that provides 18 scenes, with each pro-
viding dense geometry, HDR textures, and semantic annota-
tions. We select 8 scenes and use the Habitat simulator [29]
to render RGB images following MonoSDF [36] splits. No-
tably, we conduct ablation studies on this dataset.

Compared Methods. (1) UNISURF [18] is an occupancy-
based method that unifies surface rendering and volume ren-
dering for neural scene reconstruction. We implement the
UNISURF* with normal and depth priors for a fair com-
parison. (2) MonoSDF [36] is an SDF-based method that
adds depth and normal constraints on VolSDF [34]. (3)
Manhattan-SDF [8] is an SDF-based method that adds
a semantic branch and uses the Manhattan constraint to
regularize the geometry in floor and wall regions. (4)
COLMAP [25] is a classical multi-view stereo method with
Poisson surface reconstruction. (5) NeuRIS [31] is an SDF-
based method that introduces pseudo normal prior to the
NeUS [32] architecture. Meanwhile, it leverages multi-
view consistency to eliminate the wrong supervision signal
from inaccurate estimated results. (6) NICER-SLAM [39]
is an SDF-based dense SLAM system that uses locally im-
plicit map representation and can simultaneously optimize
for camera poses and a hierarchical neural implicit map rep-
resentation. (7) LIG [9] uses the local implicit grid rep-
resentation to reconstruct the large-scale scene from par-
tial or noise point clouds. (8) Convolutional Occupancy
network(Conv-Occ) [21] is a locally implicit representa-
tion that integrates local information to get better recon-
struction results from noisy point cloud.

Notably, local implicit representation [9, 21] can only
reconstruct the scene from point clouds, thus we re-
implement them using point clouds generated from scale-
aligned pseudo depth and utilize the provided pretrained

models for evaluation. And we directly obtain the results
from the main paper of NICER-SLAM [39].

Metrics. All meshes are evaluated by 5 standard metrics
defined in [16]: Accuracy, Completeness, Precision, Recall,
and F-score. Their definition will be discussed in the sup-
plementaryary. For the Replica dataset, we also report the
normal consistency following [13, 8, 20]. For the Tanks
and Temples dataset, we use the official server to evaluate
our results and report the F-score for selected scenes.

6.1. Main Results

We compare our method with state-of-the-art methods
on three benchmark datasets.

Method Acc ↓ Comp ↓ C-L1 ↓ Prec ↑ Recall ↑ F-score ↑
COLMAP [25] 0.047 0.235 0.141 71.1 44.1 53.7
UNISURF [18] 0.554 0.164 0.359 21.2 36.2 26.7
VolSDF [34] 0.414 0.120 0.267 32.1 39.4 34.6
NeUS [32] 0.179 0.208 0.194 31.3 27.5 29.1
Manhattan-SDF [8] 0.072 0.068 0.070 62.1 56.8 60.2
NeuRIS [31] 0.050 0.049 0.050 71.7 66.9 69.2
MonoSDF [36] 0.035 0.048 0.042 79.9 68.1 73.3
Ours 0.039 0.041 0.040 80.0 76.0 77.9

Table 1. Quantitative assessments of the proposed model against
previous works on the ScanNet dataset.

Results on ScanNet Dataset. We conducted a com-
parative analysis of our proposed approach against exist-
ing implicit reconstruction methods, including Manhattan-
SDF [8], NeuRIS [31] and MonoSDF [36] using the Scan-
Net dataset. As revealed in Table 1, our proposed method
outperforms state-of-the-art methods, with a significant in-
crease in F-score by 4.6. Additionally, in terms of Re-
call, our method substantially outperforms MonoSDF by
7.9 without needing extra data. Overall, our approach
performs on par with the state-of-art methods in “Acc”,
“Chamfer-L1(C-L1)” and “Prec” and obtain notable per-
formance gains in “Comp”, “Recall” and “F-score”. This
is because these metrics (”Comp” and ”Recall”) are better
metrics in evaluating how complete and accurate in captur-
ing the shape and details of the scene being reconstructed.
Further, Fig. 6 reveals that our method can attain more com-
plete reconstructions with details and for low pixel intensi-
ties regions.

Auditorium Ballroom Courtroom Museum Mean
MonoSDF 3.09 2.47 10.00 5.10 5.165
Ours 5.22 5.42 13.99 8.59 8.305
MonoSDF* 3.17 3.70 13.75 5.68 6.58
Ours* 6.19 7.33 19.80 11.85 11.295

Table 2. Quantitative assessments of the proposed model against
Monosdf on the Tanks and Temples dataset. The evaluation met-
rics for the Tanks and Temples dataset are F-score. * means that
the hash-grid structure is adopted.

Results on Tanks and Temples Dataset. For challeng-
ing large-scale indoor scenes, we conduct experiments on
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Figure 6. Reconstruction results on representative datasets of Replica (left), ScanNet (middle), and Tanks and Temples (right). The
ground truth is presented on the bottom-most. Red boxes in sub-figures highlight those areas where distinctive differences can be observed.

the advanced Tanks and Temples dataset [11], which fea-
tures more complicated structures. As alternative meth-
ods of neural reconstruction from images are not assessed
on this dataset, we implement the best-performing method
MonoSDF and compare with it. Thus, the MonoSDF and
two versions of our method are implemented. Specifically,
one adopts the pure MLP architecture while the other uses
the hash grids as the input representation. The quantitative
assessments (Table 2) reveal that our method shows better
performance on this dataset, regardless of whether an MLP
or hash-grid structure is used. And our hybrid representa-
tion exhibits excellent generalization abilities across differ-
ent implicit structures. Overall, our compelling experimen-
tal results on the Tanks and Temples dataset further validate
the robustness and versatility of the proposed method in re-
constructing complex and challenging indoor scenes.

Results on Replica Dataset. Quantitative assessment re-
sults on the Replica dataset are presented in Table 3. For
this dataset, we compare our methods with both point-based
methods [21, 9] and rendering methods [39, 18, 36]. Ours
significantly surpasses existing state-of-the-art neural ren-

Method Normal C.↑ Chamfer-L1 ↓ F-score ↑
Conv-Occ [21] 85.73 6.43 58.33
LIG [9] 89.56 5.53 65.20
NICER-SLAM [39] 90.27 3.91 -
UNISURF† [18] 90.96 4.93 78.99
MonoSDF† [36] 92.11 2.94 86.18
Ours† 93.43 2.58 92.12

Table 3. Quantitative assessments of the proposed model against
prior works on the Replica dataset. Herein, † indicates the use of
geometry priors as supervision signals.

dering methods. The results reveal that the SDF-based
representation outperforms the occupancy-based ones (i.e.
UNISURF*). This is because the SDF usually enforces con-
straints on the distribution of the entire scene, benefiting to
suppressing the occurrence of floaters or unnecessary struc-
tures in occupancy-based representation. Notably, our Occ-
SDF Hybrid method can constrain the distribution of the
entire scene with SDF representation meanwhile exploiting
the occupancy representation to resolve thin structures and
small objects. Qualitative comparisons are shown in Fig. 6.



6.2. Ablation Study

Normal C.↑ Chamfer-L1 ↓ F-score ↑
MonoSDF 92.11 2.94 86.18

+ feature 93.01 2.64 91.01
+ hybrid 93.22 2.77 90.24
full model 93.43 2.58 92.12

Table 4. Ablation study on the Replica dataset [27], where we pro-
gressively add different constraints to assess their impacts. The
MonoSDF [36] is set as the baseline model.

We conduct ablation studies on the Replica dataset as it pro-
vides ground-truth geometry. Four different configurations
are investigated to train our model, including (1) MonoSDF
with MLP settings (MonoSDF-MLP); (2) MonoSDF-MLP
with our feature-based rendering formula; (3) MonoSDF-
MLP with our hybrid representation; (4) MonoSDF-MLP
with both the feature-based rendering formula and hybrid
representation scheme (Full model).

Table 4 shows that all metrics are improved when using
the feature rendering to reconstruct this scene. Our pro-
posed feature rendering scheme addresses the difficulties in
reconstructing areas of low intensities, resulting in better
results. On the other hand, the hybrid representation also
leads to significant improvements in all metrics. Notably, it
improves the completeness of small objects and thin struc-
tures, as evidenced by the results in Fig. 6. By leveraging
both components, our model achieves an overall improve-
ment of 5.94 in F-score, along with improved normal con-
sistency and Chamfer-L1. We attribute this success to our
feature-based color rendering formula and our hybrid repre-
sentation, which addresses the color-bias issue in optimiza-
tion and difficulties in reconstructing detailed structures.
The visualization results in Fig. 6 show our model’s excel-
lent reconstruction performance, especially in low-intensity
areas and detailed structures. We will add more ablation
studies and visualize results in the supplementary.

6.3. Parameters Adjusting

As shown in Eq. (15), our method newly added three
different losses LsdfF

rgb ,Locc
depth,Locc

normal. In order to verify
the sensitivity of our method to hyperparameters, we pro-
vided the results of the experiment on the Replica dataset as
shown in Fig. 7. It is clear that our method is not very sen-
sitive to hyperparameters, and all the evaluated settings out-
perform the baseline method (C-L1: 2.94, F-score: 86.18).
It is worth noting that our approach demonstrates consistent
performance enhancement across diverse datasets using the
same parameter set, outperforming the baseline results.

7. Conclusion
We have analyzed the constraints present in current neu-

ral scene representation techniques with geometry priors,
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Figure 7. Performance with different hyperparameter choices.

and have identified issues in their ability to reconstruct de-
tailed structures due to a biased optimization towards high
color intensities and the complex SDF distribution. As a re-
sult, we have developed a feature rendering scheme that bal-
ances color regions and have implemented a hybrid repre-
sentation to address the limitations of the SDF distribution.
Our approach has demonstrated the successful reconstruc-
tion of room scenes with a high-fidelity surface, including
small objects, detailed structures, and low-intensity pixel
regions. We envision our results inspire further research
on improving neural scene representation for accurate and
large-scale surface reconstruction.
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